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Abstract. Recent progress in the use of ultrasonic experiments and Mul-
tiple Scattering Theory to investigate wave transport in three-dimensional
phononic crystals is summarized. Through appropriate choice of material
properties, complete band gaps can be realized for acoustic or elastic waves
in such structures. This has allowed us to demonstrate the tunnelling of
ultrasound through the band gap and to explore the unexpected effect of
absorption on evanescent waves in crystals. Wave propagation above the
gap has also been investigated, where we have shown that anisotropy of the
wave speeds leads to the focussing of ultrasound without the curved sur-
faces usually employed in lenses. These ultrasonic experiments and their
interpretation using Multiple Scattering Theory illustrate the important
contribution that the study of phononic crystals can make to learning about
wave scattering and transport in ordered mesoscopic materials.

1. Introduction

Phononic crystals are periodic composite materials with variations of veloc-
ity and density on length scales comparable with the wavelength of sound
(or ultrasound) [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Because
the scattering contrast between the component materials depends on dif-
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ferences in both density and phase velocity, phononic crystals with very
strong scattering can be realized experimentally, making such materials in-
teresting candidates for studying the profound effects of lattice structure
on wave propagation. This is one of the main reasons for the considerable
growth of interest in phononic crystals that has occurred during the last
decade. Much of this interest has focussed on phononic bandgaps, which
correspond to ranges of frequency in which acoustic or elastic waves cannot
propagate due to Bragg scattering, and are analogous to photonic band
gaps [18, 19, 20] for electromagnetic waves. Through appropriate choice
of materials, it has been demonstrated by a combination of theory and
experiment that complete band gaps can be readily achieved for acoustic
and elastic systems, so that wave propagation is forbidden in all directions.
This is in sharp contrast with photonic materials, where engineering com-
plete spectral gaps in three dimensions has been a difficult experimental
challenge.

In this paper we describe a combination of experimental and theoreti-
cal results on ultrasonic wave transport in three-dimensional (3D) phononic
cystals [13, 14, 15, 16, 17], which have been less studied experimentally than
2D structures [7, 8, 9, 10, 16], possibly because 3D structures have been con-
sidered more difficult to fabricate. After a brief description of the crystals
used in our experiments and the expected band structures, we summarize
recent pulse propagation experiments in which both amplitude and phase
information is measured, allowing the transmission coefficient, the disper-
sion relation and the wave propagation dynamics to be investigated. These
experiments are compared with the predictions of Multiple Scattering The-
ory (MST), which is ideally suited to the spherical scattering geometry of
our crystals. This combination of experiment and theory is used to inves-
tigate two quite different types of wave phenomena that result from the
underlying crystal structure: ultrasound tunnelling through the band gap
and the focussing of ultrasound without the usual curved surfaces employed
in traditional lenses. Some results of near field imaging experiments are also
reported.

2. Our 3D Phononic Crystals and their Band Structures

The crystals used in our experiments consist of close-packed periodic arrays
of spherical beads surrounded by a liquid or solid matrix. Both hcp and
fcc arrays were assembled by placing the beads carefully by hand in a
hexagonal template that was precisely machined to force the beads into
triangular layers. The layers were stacked vertically in either an ABAB.. or
ABCABC... sequence to form slabs with a hexagonal (c-axis ⊥ layers) or
face-centred cubic ([111]-axis ⊥ layers) structure, respectively. For the fcc
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Figure 1. Picture of the top surface of a hcp phononic crystal consisting of monodisperse
0.8-mm-diameter stainless steel beads in water.

structures, the template was designed with sloping sides to ensure that the
layers were arranged in the correct sequence [21]. The beads were made of
either stainless steel or tungsten carbide, and the matrix was either water
or epoxy. For all these crystals, the scattering contrast was very high (the
acoustic impedance ratios of bead to matrix ranged from 30 to 60) and
the beads were very monodisperse (e.g. for the tungsten carbide beads, the
sphere diameter d was 0.8000 ± 0.0006 mm), so that very high quality
crystals could be prepared with patience and good manual dexterity. An
example of one of the crystals is shown in Fig. 1, illustrating the excellent
regularity of the structure that was achieved.

Ultrasonic pulse propagation through the crystals was measured by plac-
ing the crystals in a large water tank in between two immersion transduc-
ers, which acted as generator and detector [15, 17]. For the water-matrix
crystals, it was necessary to keep the crystals in the template during the
measurements, so that the pulses also propagated through the bottom plate
of the holder; to avoid complications in the analysis of the data, the thick-
ness of the substrate was chosen to be sufficiently large that ultrasonic
reflections in the substrate could be separated temporally and removed
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from the subsequent analysis of the signal transmitted through the crystal.
The frequency dependence of the phase velocity, the group velocity and the
transmission coefficient was then measured by comparing the transmitted
pulses with reference pulses that had travelled once through the substrate
alone.

Before considering the experimental results, it is instructive to consider
the theoretical band structures for three of the eight possible combinations
of materials. These band structure calculations were performed using the
MST [10] and are shown in Fig. 2. For a hcp crystal of steel beads in water
(Fig. 2(a)), there is a reasonably large stop band along the c-axis, but the
gap almost closes between the M and K points, so there is only a tiny com-
plete gap in this material. Increasing the density contrast, and changing the
symmetry from hcp to fcc, results in a much larger complete gap, as shown
by the calculations for fcc tungsten carbide beads in water in Fig. 2(b)
[22]. In this case, the width of the complete gap, ∆ω/ωcentre is 19%. Figure
2(c) shows the effect of replacing the liquid water matrix with solid epoxy.
This changes the scattering, as the matrix can support both longitudinal
and transverse polarizations, and results in an even bigger compete gap,
with ∆ω/ωcentre = 90%, even though the longitudinal impedance contrast
is reduced. However, the epoxy is quite lossy, and the absorption in the
crystal becomes significant, so we will focus instead on the second system,
fcc tungsten carbide beads in water, in the remainder of this paper.

To compare the theory more directly with the results of our pulsed
transmission experiments, we use a layer MST to calculate the transmitted
field though crystals consisting of a finite number of layers [13]. For a sample
of thickness L, the transmitted field as a function of frequency ω can be
written as

T (L, ω) = A(L, ω) exp[iφ(L, ω)], (1)

where A and φ are the amplitude and cumulative phase relative to the input
field. Thus, the amplitude transmission coefficient is simply |T (L, ω)| =
A(L, ω), and the phase and group velocities, vp and vg, can be determined
from cumulative phase in the usual way:

vp(ω) =
ω

k
= L

ω

φ
=

L

tp
(2)

vg(ω) =
dω

dk
= L

dω

dφ
=

L

tg
(3)

Here k is the wave vector, and tp and tg are the phase delay and group
delay times. This layer MST is expected to give an accurate description
of our experimental results, as it corresponds closely to the experimental
geometry for measurements through slab-shaped samples.
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Figure 2. Band structure calculated using the Multiple Scattering Theory for (a) a hcp
phononic crystal of stainless steel beads immersed in water, (b) a fcc phononic crystal
of tungsten carbide beads in water, and (c) a fcc phononic crystal of tungsten carbide
beads in epoxy. Here a is the lattice constant, and vw and vep are the (longitudinal) sound
velocities in water and epoxy, respectively. The shaded regions indicate the locations of
the bandgaps in these materials. The letters denote the high symmetry points of the
Brillouin zone.
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3. Ultrasound Tunnelling through a Complete Band Gap

The band structure calculation in Fig 2(b) shows that the widest part of
the gap for the fcc tungsten-carbide-in-water crystals is predicted along the
ΓL direction (‖ [111]). Converting the normalized frequencies shown in this
figure to laboratory units, we find that the gap extends over the frequency
range from 0.8 to 1.2 MHz. To investigate the behaviour along this direc-
tion in the vicinity of the predicted gap, we have measured the frequency
dependence of the transmitted signal for a range of sample thicknesses.
We used a short pulse centred at 1 MHz, and determined the transmis-
sion coefficient from the ratio of the fast Fourier transforms (FFTs) of the
transmitted to incident pulses, taking advantage of the excellent linearity
of the detection electronics in our experiments. Typical results of these ex-
periments are shown by the symbols in Fig. 3, where they are compared
with the predictions of the layer MST. A large dip in the transmission is
seen in the expected frequency range, with the dip becoming deeper as the
sample thickness increases - a clear signature of a band gap. The smaller
oscillations either side of the gap, where the transmission is large, are due
to standing wave resonances from boundary reflections at each side of the
slab. Overall, the agreement between experiment and theory is good, es-
pecially in the gap region. However, the amplitude of the standing wave
oscillations is smaller in the experiments than in the theory, a sign of the
effects of absorption, which was not included in the theoretical calculation.
The fact that the theory and experiments agree well with each other at
the frequencies inside the gap suggest that absorption has less effect on
the transmission coefficient in this frequency range. Although we only did
transmission measurements along one crystal direction, the good agreement
between theory and experiments serves as strong evidence for the existence
of a wide complete gap, as shown in the theoretically calculated band struc-
ture.

One important parameter that characterizes the band gap is the gap
width. The band structure calculation only gives the theoretical size and
position of a band gap for an infinite sample. Experimentally, samples are
finite, and the width and position of the band gap may be thickness de-
pendent. This is borne out by our experiments, which show that the gap
width (defined here as the frequency interval between the positions of the
peaks in the transmission coefficient at the band edges) decreases as the
sample thickness increases, tending towards a constant for our thickest sam-
ples (Figure 4). Again, the theory and experiments are in good agreement,
especially for the thinner samples.

To look in more detail at the decrease in the transmission as a function of
the number of layers in the crystal, we plot the thickness dependence of the
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Figure 3. Frequency dependence of the transmission coefficient in the vicinity of the
band gap in phononic crystals made from tungsten carbide beads in water. Experimental
data for two sample thicknesses (symbols) are compared with the predictions of the layer
MST (solid and dashed curves).

transmission coefficient at the gap central frequency of 0.945 MHz in Fig.
5. From this figure, it can be seen that the transmission coefficient decays
exponentially as the sample becomes thicker, as expected for evanescent
waves in a band gap. From a fit to T = exp(−L/(2l)), we determine the
value of the decay length l of the evanescent modes to be 0.54 mm at this
frequency, very close to half the lattice constant (a =

√
2d = 1.13mm).

The value of l corresponds to an imaginary wave number κ of 0.92 mm−1.
This exponential decay with such a small value of the decay length, or
large κ, is strongly suggestive that the modes in the gap are evanescent,
not propagating, implying that the small signal that does get through thick
samples does so by tunnelling. Note that the transmitted intensity for the
thickest sample, consisting of only 12 layers, is nearly 7 orders of magnitude
smaller than the incident intensity.

The frequency dependence of the cumulative phase φ and phase velocity
vp(ω) = Lω/φ in the vicinity of the gap are shown in Fig. 6. Here, data
for the 12-layer sample are plotted as solid symbols. The experimental data



8

Figure 4. Variation of the gap width with crystal thickness.

for φ were obtained from the phase difference of the complex FFTs of the
transmitted and input pulses, while resolving any possible ambiguity of 2π
in the phase by making use of the condition that the cumulative phase
must extrapolate to zero at zero frequency. The cumulative phase increases
approximately linearly with frequency at low frequencies, with small os-
cillations due to the standing wave resonances mentioned above. However,
in the gap between 0.8 and 1.2 MHz, there is a plateau in the cumula-
tive phase; in the plateau, there is only a very small linear increase in the
phase with frequency, implying a linear increase in the phase velocity and
a large group velocity. The behaviour of the phase velocity, shown in Fig.
6(b), confirms this result, and also shows that the phase velocity decreases
with frequency on both sides of the gap, reaching values substantially less
than the velocity of sound in the matrix material at the highest frequencies
shown. The curves show that the behaviour for φ and vp calculated from
the transmission MST are in good overall agreement with the experimental
data. The phase velocity data can also be used to compute the disper-
sion curve. Good agreement for the data from the 12-layer crystal is found
with the band structure calculation, as shown in [17]. Here we compare



9

Figure 5. Amplitude transmission coefficient as a function of sample thickness, show-
ing the strong exponential decay. Both the experimental data (solid symbols) and the
predictions of the MST (open symbols) are in good agreement with the exponential fit
(solid line), which gives a tunnelling decay length of l = 0.54 mm.

the experimental dispersion curves in the extended zone scheme (left panel
in Fig. 7) with theoretical predictions from the transmission MST theory
(right panel in Fig. 7) for three different sample thicknesses. It can be seen
that as the sample becomes thicker, the dispersion curve becomes steeper
around the boundary of the first Brillouin zone. The overall structure is
well captured by the theory, although slight differences can be noticed. The
steep slope of the dispersion curve indicates that the group velocity is large
in the gap, as the group velocity is equal to the slope of the dispersion
curve.

To examine the behaviour of the group velocity in more detail, and to
obtain more definitive evidence that tunnelling of ultrasound is occurring
in the gap, we have measured the group velocity directly from pulse trans-
mission experiments [17]. These measurements were performed by digitally
filtering the input and transmitted pulses using a narrow Gaussian band-
width, as shown in Fig. 8 for a 12-layer phononic crystal. In this example,
the bandwidth was 0.05 MHz and the central frequency was 0.945 MHz,
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Figure 6. Cumulative phase and phase velocity as a function of frequency for a 12-layer
tungsten carbide/water crystal. The solid symbols represent experimental data and the
solid curves represent the predictions of the layer MST.

the same frequency in the middle of the gap as in Fig. 5. It is clear from
this figure that the pulse travelling through the crystal (bottom panel) ar-
rives very soon after the input pulse (top panel), and travels much more
quickly than an identical pulse transmitted through the same thickness of
water (middle panel). Note also that the shape of the pulse that has trav-
elled through the crystal is identical with the input pulse, although much
reduced in amplitude; this confirms that despite the considerable variation
of the phase velocity in the gap region, there is negligible pulse distortion,
and the pulse transit time is well defined. The origin of the negligible pulse
distortion lies in the linearity of the phase variation with frequency within
the gap (see Fig. 6), implying that the group velocity dispersion dk2/d2ω
is essentially zero, as we have verified directly in other measurements [21].
The delay between the peak arrival times of the sample and input pulses
gives the group delay time tg, from which we determine the group velocity
experimentally (vg = L/tg).
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Figure 7. Comparison of the measured dispersion curves along the direction from Γ to
L (left panel) with the predictions of the layer MST for the transmission (right panel).
The wave vector k is divided by the value at the Brillouin zone boundary for this di-
rection (

√
3π/a, where a is the lattice constant). Data and theory for three thickness,

corresponding to 4, 7 and 12 layers, are shown.

The frequency dependence of the group delay time in the vicinity of the
gap is shown in Fig. 9 for four crystals containing 3, 6, 9 and 12 layers.
The behaviour is very striking. Below and above the gap, the group delay
time undergoes large oscillations due to the standing wave resonances of
the crystal slabs, and the delay time averaged over the oscillations increases
in proportion to the sample thickness, as expected. Even the average delay
time is quite large at these frequencies, and corresponds to a group velocity
less than that of water. By contrast, in the gap, the delay time is very
short and essentially independent of sample thickness, implying that the
group velocity increases linearly with L as the sample becomes thicker. This
behaviour shows convincingly that tunnelling is occurring, since one of the
remarkable features of tunnelling is that the tunnelling time is independent
of thickness [23]. This feature of tunnelling holds quite generally unless the
sample or barrier is extremely thin.

To examine the tunnelling behaviour in more detail, we plot the group
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Figure 8. Digitally filtered input and transmitted pulses (top and bottom panels; band-
width 0.05 MHz) for a 12-layer phononic crystal in the middle of the gap, compared with
the pulse transmitted through the same thickness of water (middle panel).

velocity near the centre of the gap at 0.945 MHz as a function of sample
thickness L (Fig. 10). This figure shows that the group velocity in the
gap increases monotonically with L, both in experiment (triangles) and in
MST theory (solid line and squares). Note the large values of the group
velocity for thick samples, where experimental and theoretical values can
be larger than the longitudinal velocity in both water and tungsten car-
bide (horizontal dotted lines). However, there is a substantial difference
between the theoretical predictions and the experimental results, which we
interpret as a consequence of absorption which was not included in the
MST calculation [24]. For evanescent waves in the band gap of a phononic
crystal, the consequences of absorption are quite interesting. As we have
discussed previously [17], the main effect of absorption is to cut off long
multiple scattering paths, with the result that the destructive interference
of Bragg-scattered waves that give rise to the band gap becomes incom-
plete. Consequently, in addition to the dominant tunnelling mode, a small
propagating component is ‘created’ by absorption, with an effective wave
vector determined by the incomplete cancellation of the Bragg scattered
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Figure 9. Measurements of the group delay time as a function of frequency for 4 phononic
crystals containing 3, 6, 9 and 12 layers, corresponding to 1, 2, 3 and 4 complete unit
cells along the [111] direction.

waves. This has the effect of increasing the transit time and hence reduc-
ing the group velocity. We can understand the effects of absorption on the
group velocity by a ‘two-modes’ model, based on the simple approxima-
tion that pulse transport can be viewed as a dominant tunnelling process
in parallel with a small propagating component. In this model, the group
velocity can be estimated from the weighted average of the tunnelling time,
ttun and the propagation time L/vprop [21]:

v̄g =
L

wtttun + wp(L/vprop)
(4)

Note that ttun and vprop, the group velocity of the propagating mode, are
constant, independent of L. The weighting factors wt and wp are given by

wt =
c exp[−L/(2ltun)]

c exp[−L/(2ltun)] +
√

1 − c2 exp[−L/(2lprop)]
(5)

wp =

√
1 − c2 exp[−L/(2lprop)]

c exp[−L/(2ltun)] +
√

1 − c2 exp[−L/(2lprop)]
(6)
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Figure 10. The group velocity as a function of sample thickness at 0.945 MHz. The
horizontal dotted lines indicate the longitudinal velocities in water and tungsten carbide.
The inset shows theoretical predictions in 1D for the group velocity with (solid circles)
and without (solid squares) absorption. The dashed curves are fits of the two-modes
model to the experimental data.

Here c is the coupling coefficient, and ltun and lprop are the extinction
lengths of the tunnelling and propagating modes. Using the MST to calcu-
late ttun = 0.54 µs and ltun = 0.54 mm, and taking vprop = 1.5 km/s (the
group velocity in the water matrix), we fit Eq. (4) to the experimental data
in Fig. 10 with lprop and c as the only free parameters. We find that the
empirical parameter describing the decay of the propagating mode is very
similar to the tunnelling mode (lprop = 0.47 mm), so that the weighting
factors are almost independent of thickness, and that c = 0.96, confirming
that tunnelling is the dominant component. It can be seen from Fig. 10
that this simple phenomenological model gives an excellent fit to the data
over the entire range of thicknesses. To check the validity of this approach,
we have also calculated the group velocity for a 1D phononic crystal in
which absorption can be included rigorously. As shown in the inset to Fig.
10, absorption reduces the group velocity in the gap; furthermore, we can
explain the reduction in terms of the two-modes model by fitting Eq. (4) to
the calculation with absorption, giving the dotted curve shown in the inset.
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Thus, the two-modes model can successfully account for the effect of ab-
sorption in both cases. Note that the effects of absorption on wave transport
in the gap are somewhat paradoxical, in the sense that absorption appears
to modify tunnelling to produce a small-amplitude propagating component
with a real wave vector, even though both absorption and tunnelling are
themselves characterized by imaginary wave vectors.

It is important to recognize that the tunnelling time for ultrasonic waves
in phononic crystals, both measured in these experiments and calculated
from the MST theory, corresponds to the group delay time of a pulse.
We have verified this directly by comparing the measured pulse delay
time, defined as above by the time interval between the peaks of Gaus-
sian input and transmitted pulses, and the group time tg = dφ/dω deter-
mined by numerically differentiating the measured cumulative phase with
respect to frequency. We find that the same values of ttun are measured
in both cases. Thus, some of the theoretical models of the tunnelling time
[25, 26, 27, 28, 29, 30], such as the ‘dwell time’ or the Büttiker-Landauer
‘semi-classical’ time [25, 29], do not apply here. Our results for the tun-
nelling time in the middle of the gap are summarized in Fig. 11, where we
plot the tunnelling time as a function of the thickness of the crystals. Both
theory and experiment approach an asymptotic limit for the thicker sam-
ples that is independent of L. Moreover, even though the times are short
by ultrasonic standards for samples up to 8 mm thick, being about 1 µs
or less, they are long enough to be easy to measure compared with the
tunnelling times in optical band gap experiments, which are about 9 orders
of magnitude shorter [32, 31, 33]. This large difference in the magnitude of
the tunnelling times is a consequence of the relation that we find between
the tunnelling time and the gap width ∆ωgap, a relationship that also holds
for the group delay of light and electrons (where for electrons ∆ωgap cor-
responds to the barrier height): ttun ∼ 1/∆ωgap in the middle of the gap.

The sample-thickness-independent tunnelling time observed in these
and other experiments may be interpreted to imply that the group ve-
locity can be greater than the speed of light for a sufficiently thick crystal
(superluminal velocity). Does it violate causality? The answer is no. This
superluminal phenomenon can be understood by a pulse reshaping process
in which interference causes the later part of the pulse to be attenuated in
such a way that the peak of the transmitted pulse shifts to an earlier time
than that of the incident pulse. The energy transmitted at any time is much
less than it would have been without the crystal in place; in fact for the
values of the tunnelling time measured in our experiments, the thickness
required for the group velocity to become superluminal is so great that the
signal would be undetectably small (the relevant distance in everyday units
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Figure 11. The tunnelling time as a function of sample thickness. For ultrasound tun-
nelling though a phononic crystal, the tunnelling time is equal to the group delay time.

amounts to the length of a football field!). Nonetheless, it may still be worth
noting that the speed is ‘supersonic’ in the sense that it greatly exceeds the
velocity of sound in water, which plays a role in these acoustic experiments
that is analogous to the vacuum speed of light in optics experiments.

4. Near-field ultrasonic imaging of the wave field at the surface
of phononic crystals

In this section, we give some examples of the wave field close to the surface
of the phononic crystals consisting of tungsten carbide beads in water. We
use an ultrasound field pattern imaging technique, in which a plane-wave
pulse is incident on one face of the crystal and the transmitted field is
measured near the opposite face using a small hydrophone detector. By
studying these wave field patterns, a clear picture can be obtained of the
behaviour of the displacement field and the distribution of energy in perfect
crystals, as well as monitoring the effects of defects in imperfect crystals.

The wave amplitude just above the surface of a phononic crystal is not
uniform, but varies in periodic patterns that reveal the underlying structure
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Figure 12. Theoretical (left) and experimental (right) near-field patterns for a 7-layer
fcc crystal. The plane of the figure is perpendicular to the [111] direction. The height and
width of the pictures are both equal to 3 bead diameters.

of the crystal. Figure 12 shows our theoretical and experimental near-field
wave patterns 3 mm away from the crystal surface for a 7-layer crystal.
These field patterns were measured and calculated using the MST at 2.5
MHz, well above the complete band gap. Despite the fact that the mea-
sured pattern is slightly tilted, due to a very small drift in the 2D scanner
used to position the hydrophone, good agreement between the theory and
experiment is observed. The pattern shows the 3-fold symmetry expected
in a plane perpendicular to the [111] direction, and suggests that mea-
surements of such periodic near-field diffraction patterns could provide a
novel way of determining crystal structures. The pattern varies rapidly as
the frequency is varied, while always preserving the underlying symmetry,
giving additional information on the interference of the multiply scattered
wave field inside the crystal. For example, peaks in the field pattern at 2.4
MHz were found to become valleys at 2.8 MHz, reflecting the very different
spatial distribution of the wave energy that that results from only a modest
change in the frequency (∼ 15%).

Most crystals are usually not perfect, and imaging the location of defects
can be important for understanding and controlling their physical proper-
ties. An example of a subsurface defect, whose presence could not detected
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Figure 13. Image of a line defect in a 6-layer phononic crystal of tungsten carbide beads
in water. The line defect shows up clearly as a bright streak in the image on the left,
which was taken at a frequency just above the band gap, while it is barely visible in the
image on the right, which was taken at a frequency in the gap.

by visual inspection of the crystal, is shown in Fig. 13. Here the presence of
a line defect in a 6-layer phononic crystal shows up clearly when imaged at
frequencies above the gap (left), but is barely detectable in the gap (right),
illustrating the increased sensitivity to this type of defect in the pass band.
As another example of imaging defects, we also studied a point defect (va-
cancy) in the middle of the top layer of the 7 layer phononic crystal. The
measured wave field patterns both before and after removing one of the
beads are shown in Fig. 14. It can be seen that the field pattern of the
‘perfect’ crystal has almost perfect periodicity (top right). For the crystal
with the defect, the pattern changes around the vacancy, as can be see by
comparing the magnified images before and after the defect was removed,
(top and bottom left images in the figure). The field of view in the magni-
fied images is approximately three bead diameters across, and the vacancy
is located close to the centre. This figure shows that the effect of creating
the vacancy is not to change the local symmetry of the field pattern, or
to remove any of the features, but to substantially modify the amplitude
of the field pattern in the vicinity of the defect. Rather surprisingly, the
wave amplitude above the defect is smaller than for the perfect crystal,
which is counterintuitive since one would naively imagine that removing
a scatterer from the surface would enhance the field locally. To show this
effect more clearly, the bottom right picture shows the difference between
these two field patterns, providing a clearer indication of the location of
the defect. These examples illustrate that studying such field patterns in
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Figure 14. Observation of a point defect or vacancy created by removing one bead from
the top layer of a 7-layer phononic crystal. The perfect lattice is shown in the top two
images (the left picture being a magnified portion of the right picture). The lower left
image shows the change in the field pattern as a result of removing the bead, while the
difference (perfect crystal image minus the defect crystal image) is shown at the lower
right. White corresponds to maximum amplitude and black to minimum amplitude.

phononic crystals may provide a novel opportunity for learning more about
wave scattering and propagation inside periodic composite materials.

5. Focussing Ultrasound with Phononic Crystals

At frequencies outside the band gap, wave propagation is strongly influ-
enced by the anisotropy of the dispersion relations, leading to interesting
effects arising from the fact that the group velocity is no longer parallel to
the wave vector. In atomic crystals, analogous effects, known as phonon fo-
cussing, have been extensively studied [34], but experiments are limited to
the long wavelength regime where λ � a. To investigate phonon focussing
at frequencies above the first band gap in the tungsten carbide/water
phononic crystal, we replaced the quasi plane-wave source used in the ex-



20

Figure 15. The spatial variation of the wave amplitude in a plane parallel to the surface
of a tungsten-carbide/water phononic crystal when an incident point-like source is placed
on the opposite side of the crystal. The frequency is 1.57 MHz. Instead of the diverging
beam seen without the crystal in place, a tightly focused spot is observed. Fig. (a) shows
the experimental data and (b) shows the theoretical prediction using a Fourier imaging
technique, in which wave propagation through the crystal is described by the dispersion
surface calculated using the MST.

periments described above with a small-diameter disk-shaped transducer,
which acts as a good approximation to a point source. The source trans-
ducer was placed close to the sample surface (3 mm, or approximately 2
wavelengths, away). The field pattern on the far side of the crystal and sub-
strate was measured by scanning a small hydrophone, which had a diameter
much less than the ultrasonic wavelength, in a plane parallel to the crystal
surface. The experiments were performed with pulses. By taking FFTs of
each pulse, the amplitude of the transmitted field at any frequency in the
bandwidth of the pulse could then be measured as a function of position in
the detecting plane.

As the frequency is varied, the detected field pattern varies widely, a
result of the rapid changes in the anisotropy of the dispersion relations with
frequency that take place in the higher pass bands (see Fig. 2 and Refs.
[35]. One example of the measured field patterns for a 12-layer tungsten-
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carbide/water crystal is shown in Fig. 15(a); this pattern was measured at
1.57 MHz, which corresponds to a reduced frequency of 1.2 near the bottom
of the third pass band along the ΓL direction (Fig. 2(b)). The figure shows
that the diverging beam from the source transducer, which has a FWHM
in the detection plane of 65 mm (more than three quarters of the width of
the region imaged in the figure), is sharply focussed to a tight spot with a
FWHM of only 5 mm. Thus, it is clear from this example that a phononic
crystal with flat parallel planar faces can be used to focus ultrasound. One
remarkable feature of these data is that such a sharp focal spot is observed
in a plane quite far from the crystal; the distance from the crystal face to
the detection plane is approximately 130 wavelengths, while the distance
from the source to the crystal is only 2 wavelengths.

The origin of the focussing effect can be understood from the dispersion
(or slowness) surface, which, for constant frequency, represents the varia-
tion in the magnitude of the wave vector with direction. To interpret our
data, we calculated the dispersion surface using the MST, solving for the
magnitudes of the wave vectors along different wave vector directions at a
particular frequency, in the same way as the band structure is calculated for
different eigenfrequencies along particular wave vector directions. To repre-
sent forward propagation through the crystal at frequencies near 1.6 MHz,
the dispersion surface calculated in the reduced Brillouin zone was trans-
lated to the extended zone, the correct translation being from �k to �k−2�G111

in this case. Figure 16 shows a 3D plot of the dispersion surface for wave
vectors near the ΓL (or [111]) direction. It can be seen that the dispersion
surface has a pronounced minimum for �k parallel to the [111] direction.
Consequently, the normal to the dispersion surface, which represents the
direction of the group velocity and hence the direction in which energy is
transported inside the crystal, points back towards the [111] direction as
the direction of the wave vector moves away from the [111] direction. This
large anisotropy results in ‘negative refraction’ without a negative refractive
index; this occurs since the net wave transport inside the crystal follows the
directions of the group velocity, which points in directions that correspond
to negative angles of refraction. However, it is important to remember that
this is not a refraction phenomenon in the usual sense, since its origin is
the direction of the group velocity and not the wave vector. The dip in the
dispersion surface shown in Fig. 16 is quite deep, resulting in large effective
‘negative refraction’; as a result, it is possible for the waves passing through
the crystal to form a tight focal spot quite far away from the crystal even
when the crystal is only 12 layers thick.

To interpret our data quantitatively, we calculated the field pattern
corresponding to the data shown in Fig. 15(a) using a Fourier imaging
technique. After the input beam is Fourier transformed spatially into plane
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Figure 16. A 3D plot of the dispersion surface for wave vectors near the ΓL ([111])
direction. The dispersion surface is shown in the extended zone scheme, which also corre-
sponds to part of the periodic zone scheme representation centred at 2GΓL. The directions
of k′

x and k′
y are parallel to the LK and LW directions, respectively. The frequency used

in these calculations corresponds to the same frequency relative to the band edge as in
the experimental data shown in Fig. 15.

waves, each plane wave is allowed to propagate through the crystal accord-
ing to the wave vectors determined by its dispersion surface, accounting
correctly for refraction at the front and back interfaces (i.e. the components
of the wave vector parallel to the surface remain the same inside and outside
the crystal). The field pattern in the detecting plane is then reconstructed
by taking an inverse Fourier transform back into real space, giving the re-
sults shown in Fig. 15(b). Excellent agreement with experiment is seen,
confirming that this model correctly incorporates the essential physics of
this wave focussing phenomenon.
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5.1. CONCLUSIONS

Ultrasonic pulse propagation in phononic crystals is making an important
contribution to understanding wave transport in ordered structures. Be-
cause the wave field is measured directly in ultrasonic experiments, a com-
plete picture of wave propagation is accessible, allowing the transmission
coefficient, the dispersion relations and the dynamics of the wave fields
to be investigated. In this paper, we have concentrated on two different
types of wave phenomena in 3D phononic crystals: ultrasound tunnelling
and focussing by ‘negative refraction’. Some examples of near-field imaging
experiments have also been presented.

We have summarized recent progress in demonstrating the tunnelling
of ultrasonic wave pulses through a complete band gap, showing that re-
markably large values of the group velocity can be measured, as the group
velocity is proportional to sample thickness. The classic signature of tun-
nelling, that the tunnelling time is independent of sample thickness for thick
samples, has been demonstrated, and its magnitude found to be equal to
the reciprocal of the gap width in the middle of the gap. The experimental
results have been interpreted using the Multiple Scattering Theory, which
was found to give good overall agreement. The counterintuitive effects of
absorption on the tunnelling dynamics were also investigated and inter-
preted using a simple ‘two-modes’ model; this model shows that the effect
of absorption on evanescent waves in band gap materials is to modify their
character by introducing a small propagating component.

The concave character of the dispersion surfaces in phononic crystals
(as viewed looking back towards the origin) has been shown to lead to the
focusing of ultrasonic waves from a diverging source in the absence of the
usual curved surfaces employed in traditional lenses. Again the MST the-
ory provides an excellent basis for understanding the experimental results,
and gives predictions that are in good agreement with experiment. We are
currently examining the behaviour at other frequencies and extending this
work to solid 3D phononic crystals, which are easier to handle and more
useful for practical applications.
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